Hollow Conductors

A point charge $+Q$ is placed at the center of the conductors. The induced charges are:

1. $Q(I1) = Q(I2) = -Q$; $Q(O1) = Q(O2) = +Q$

2. $Q(I1) = Q(I2) = +Q$; $Q(O1) = Q(O2) = -Q$

3. $Q(I1) = -Q$; $Q(O1) = +Q$; $Q(I2) = Q(O2) = 0$

4. $Q(I1) = -Q$; $Q(O2) = +Q$; $Q(O1) = Q(I2) = 0$
Hollow Conductors

(1) The inner faces are negative, the outer faces are positive.

Looking in from each conductor, the total charge must be zero (this gives the inner surfaces as \(-Q\)). But the conductors must remain neutral (which makes the outer surfaces have induced charge \(+Q\)).
Hollow Conductors

A point charge $+Q$ is placed at the center of the conductors. The potential at O_1 is:

1. Higher than at I_1
2. Lower than at I_1
3. The same as at I_1
Hollow Conductors

(3) O1 and I1 are at the same potential

A conductor is an equipotential surface. O1 and I1 are on the same conductor, hence at the same potential
Hollow Conductors

A point charge +Q is placed at the center of the conductors. The potential at O2 is:

1. Higher than at I1
2. Lower than at I1
3. The same as at I1
Hollow Conductors

(2) O_2 is lower than I_1

As you move away from the positive point charge at the center, the potential decreases.
Hollow Conductors

A point charge +Q is placed at the center of the conductors. If a wire is used to connect the two conductors, then positive charge will flow:

1. From the inner to the outer conductor
2. From the outer to the inner conductor
3. Not at all
Hollow Conductors

(1) Positive charge flows outward

Positive charges always flow “downhill” – from high to low potential. Since the inner conductor is at a higher potential the charges will flow from the inner to the outer conductor.
Changing C Dimensions

A parallel-plate capacitor, disconnected from a battery, has plates with equal and opposite charges, separated by a distance d. Suppose the plates are pulled apart until separated by a distance $D > d$. How does the final electrostatic energy stored in the capacitor compare to the initial energy?

1. The final stored energy is smaller
2. The final stored energy is larger
3. Stored energy does not change.
Changing C Dimensions

(2) The stored energy increases

As you pull apart the capacitor plates you are increasing the amount of space in which the E field is non-zero and hence increase the stored energy. Where does the extra energy come from? From the work you do pulling the plates apart.
Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The charge stored in the capacitor

1. Increases
2. Decreases
3. Stays the Same
Dielectric in a Capacitor

(3) The charge is unchanged

Since the capacitor is disconnected from a battery there is no way for the amount of charge on it to change.
Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ in inserted between the plates. The energy stored in the capacitor

1. Increases
2. Decreases
3. Stays the Same
Dielectric in a Capacitor

(2) The energy stored decreases

The dielectric reduces the electric field and hence reduces the amount of energy stored in the field.
A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The force on the dielectric

1. pulls in the dielectric
2. pushes out the dielectric
3. is zero
Dielectric in a Capacitor

(1) The dielectric is pulled into the capacitor

We just saw that the energy is reduced by the introduction of a dielectric. Since systems want to reduce their energy, the dielectric will be sucked into the capacitor.

Alternatively, since opposing charges are induced on the dielectric surfaces close to the plates, the attraction between these will lead to the attractive force.
Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The charge stored in the capacitor

1. Increases
2. Decreases
3. Stays the Same
Dielectric in a Capacitor

(3) The charge is unchanged

Since the capacitor is disconnected from a battery there is no way for the amount of charge on it to change.
Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The energy stored in the capacitor

1. Increases
2. Decreases
3. Stays the Same
Dielectric in a Capacitor

(2) The energy stored decreases

The dielectric reduces the electric field and hence reduces the amount of energy stored in the field.
Dielectric in a Capacitor

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ is inserted between the plates. The force on the dielectric

1. pulls in the dielectric
2. pushes out the dielectric
3. is zero
Dielectric in a Capacitor

(1) The dielectric is pulled into the capacitor

We just saw that the energy is reduced by the introduction of a dielectric. Since systems want to reduce their energy, the dielectric will be sucked into the capacitor.

Alternatively, since opposing charges are induced on the dielectric surfaces close to the plates, the attraction between these will lead to the attractive force.