Practice Right Hand Rule #1

Remember: $\mathbf{F}_B = q\mathbf{v} \times \mathbf{B}$

What direction is the force on a positive charge when entering a uniform \mathbf{B} field in the direction indicated?

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force
Practice Right Hand Rule #1

(5) the force is into the page

Using your right hand, thumb along \(\mathbf{v} \), fingers along \(\mathbf{B} \), palm into page
Practice Right Hand Rule #2

Remember: \(\vec{F}_B = q\vec{v} \times \vec{B} \)

What direction is the force on a positive charge when entering a uniform \(B \) field in the direction indicated?

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force
Practice Right Hand Rule #2

(6) Force is out of the page

\[\begin{align*}
q & \qquad \rightarrow \qquad v \\
& \uparrow \quad B
\end{align*} \]
Practice Right Hand Rule #3

What direction is the force on a positive charge when entering a uniform B field in the direction indicated?

1) up
2) down
3) left
4) right
5) into page
6) out of page
7) there is no net force
Practice Right Hand Rule #3

(1) The force on the positive charge is up
Hall Effect

A conducting slab has current to the right. A B field is applied out of the page. Due to magnetic forces on the charge carriers, the bottom of the slab is at a higher electric potential than the top of the slab.

\[
\begin{align*}
\text{V} & > \text{V(Top)} \\
\end{align*}
\]

On the basis of this experiment, the sign of the charge carriers that make up the current in the slab is:
1) positive
2) negative
3) cannot be determined
Hall Effect

(1) The carriers are positive

Look at the force on the carriers. If positive, they are flowing to the right, and $\vec{F}_B = q\vec{v} \times \vec{B}$ will be down. If negative they are flowing to the left and $\vec{F}_B = q\vec{v} \times \vec{B}$ will be down (don’t forget the sign of q!) So either way the force is down. But we know that the result is a higher potential at the bottom – positive charges are moving down. So the carriers are positive.
Rail Gun

A bar is free to slide on two parallel rails. A current I flows through the bar in the direction shown. An external magnetic field points out of the page. The bar in the center of the figure will:

1) move left
2) move right
3) stay in place
Rail Gun

(2) The rail will move to the right

\[\vec{F}_B = I \vec{l} \times \vec{B} \], and up cross out is right